Applying deep DNA sequencing to common, complex pediatric traits.

نویسندگان

  • John M Dagle
  • Jeffrey C Murray
چکیده

The specific genetic factors contributing to the causes of complex pediatric diseases are gradually being identified through a combination of technological advances, advanced statistical methods, and large biorepositories with appropriate samples and data. These developments have the capacity to personalize diagnosis and treatment of the common complications faced by preterm infants. The article in this issue of Pediatrics by Wambach et al is illustrative of this transformation and was applied to respiratory distress syndrome (RDS), the most common respiratory morbidity associated with prematurity. The authors considered RDS as a complex disease with both genetic and environmental/developmental risk factors. By excluding infants of ,34 weeks’ gestation, a sample cohort was studied that was enriched for genetic causes of RDS and depleted of some developmental risk factors. They examined several genes previously associated with Mendelian single-gene (recessive usually) contributors to RDS that may be severe even in the term neonate. They searched for heterozygotes of known mutations or more minor variants that would result in a less-extreme phenotype but still be significant contributors to RDS in the near-term infant. Their finding that ABCA3 mutations are overrepresented in preterm infants with RDS compared with those without RDS is consistent with a growing body of literature demonstrating that a non-Mendelian complex disease may be caused by alterations in the same gene responsible for a more severe syndromic, single-gene effect, presentation. Although complex traits are usually thought of as arising from the interplay of many genetic and environmental factors, each of small-effect, current work suggests that recently arising rare variants may individually have a substantial impact on a disease phenotype. These effects are driven by what is a presumably lower dose of a “genetic abnormality.” Although they focused on coding sequence variants to assist in determining causality by using functional modeling, the study strongly suggests that future studies should also focus on regulatory regions for ABCA3 where the protein structure may be intact but dosage altered. If these results are confirmed, it will allow for more accurate diagnosis and estimation of recurrences in subsequent pregnancies with perhaps altering plans for delivery hospital or intensity of monitoring of term or near-term infants for RDS after birth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategic approaches to unraveling genetic causes of cardiovascular diseases.

DNA sequence variants are major components of the "causal field" for virtually all medical phenotypes, whether single gene familial disorders or complex traits without a clear familial aggregation. The causal variants in single gene disorders are necessary and sufficient to impart large effects. In contrast, complex traits are attributable to a much more complicated network of contributory comp...

متن کامل

Target Enrichment Improves Mapping of Complex Traits by Deep Sequencing

Complex traits such as crop performance and human diseases are controlled by multiple genetic loci, many of which have small effects and often go undetected by traditional quantitative trait locus (QTL) mapping. Recently, bulked segregant analysis with large F2 pools and genome-level markers (named extreme-QTL or X-QTL mapping) has been used to identify many QTL. To estimate parameters impactin...

متن کامل

Strategic Approaches to Unraveling Genetic Causes of Cardiovascular Diseases The Genomic Architecture of Sporadic Heart Failure Genetic Basis of Atherosclerosis Disease Genetics of Human Hypertension Pharmacogenetics of Cardiovascular Drugs Genetics of Aortic Aneurysm Genetics of Congenital Heart Disease

DNA sequence variants are major components of the “causal field” for virtually all medical phenotypes, whether single gene familial disorders or complex traits without a clear familial aggregation. The causal variants in single gene disorders are necessary and sufficient to impart large effects. In contrast, complex traits are attributable to a much more complicated network of contributory comp...

متن کامل

Genetics of pediatric obesity.

Onset of obesity has been anticipated at earlier ages, and prevalence has dramatically increased worldwide over the past decades. Epidemic obesity is mainly attributable to modern lifestyle, but family studies prove the significant role of genes in the individual's predisposition to obesity. Advances in genotyping technologies have raised great hope and expectations that genetic testing will pa...

متن کامل

Using linkage analysis of large pedigrees to guide association analyses

To date, genome-wide association studies have yielded discoveries of common variants that partly explain familial aggregation of diseases and traits. Researchers are now turning their attention to less common variants because the price of sequencing has dropped drastically. However, because sequencing of the whole genome in large samples is costly, great care must be taken to prioritize which s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pediatrics

دوره 130 6  شماره 

صفحات  -

تاریخ انتشار 2012